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Abstract
Harper’s equations for simple and complex two-dimensional lattices subject
to a magnetic field have been derived in the tight-binding approximation. In
our derivation we do not neglect the influence of the magnetic field on the
electron eigenfunctions and eigenvalues in isolated atoms. Using a variational
procedure for finding eigenfunctions and eigenvalues, we have self-consistently
obtained Hofstadter’s butterflies. Even for a simple square lattice Hofstadter’s
butterfly differs from the butterfly obtained in the case in which the influence
of the magnetic field on the electron eigenvalues and eigenfunctions in isolated
atoms is not taken into account.

PACS numbers: 71.70.−d, 75.10.−b

1. Introduction

The problem of an electron on a two-dimensional periodic lattice subject to a magnetic field
has been of interest in solid state physics for several decades. After Hofstadter had numerically
studied the electron spectrum of the Harper model [1] and discovered the fractal structure of
the spectrum as a function of the magnetic flux per lattice cell [2], the interest in the problem
especially grew (see, for example, theoretical [3–10] and experimental [11–13] works and
references therein). The problem of two interacting particles in a two-dimensional potential
and a magnetic field was studied in [14].

So far the Harper model and Hofstadter’s butterfly have been considered for a simple
two-dimensional lattice. Moreover, in the papers in which the tight-binding approximation
is used in order to derive Harper’s equation, it is assumed that the influence of the magnetic
field on the electron eigenfunctions and eigenvalues in isolated atoms is negligible. The latter
assumption is justified for real atoms. However, at present, the most appropriate objects for
experimental investigation of electrons in a high magnetic field are artificial two-dimensional

0305-4470/04/225763+14$30.00 © 2004 IOP Publishing Ltd Printed in the UK 5763

http://stacks.iop.org/ja/37/5763


5764 G A Vugalter and A S Pastukhov

lattices of quantum dots or anti-dots. In such structures the number of magnetic flux quanta
per lattice cell can exceed unity for the magnetic field values (of order 10 MGs) achievable
in experiments. The coupling energy of an electron in a quantum dot is much lower than in
a real atom, therefore the influence of the high magnetic field on the electron eigenfunctions
and eigenvalues in a quantum dot is more significant than in an atom. It should be noted that
the influence of the magnetic field on the atomic energy level and on the hopping integrals was
discussed by Alexandrov and Capellmann [15] in connection with the orbital diamagnetism
of two-dimensional electrons. The importance of the magnetic shift of the atomic level in
the theory of electronic diamagnetism of two-dimensional electrons was mentioned in [16].
However, in both [15, 16] Harper’s equation and Hofstadter’s butterfly were not considered.

The purpose of our paper is to derive Harper’s equations for a simple two-dimensional
square lattice and for a complex two-dimensional lattice consisting of two simple square
sublattices. In both cases the lattices are subject to a magnetic field perpendicular to the lattice
plane. Our derivation is based on the tight-binding approximation and takes into account
the influence of the magnetic field on the electron eigenfunctions and eigenvalues in isolated
atoms (despite our results being applicable rather to a lattice of quantum dots than to a lattice
of real atoms, we will use the term ‘atom’ instead of the term ‘quantum dot’). We do not take
into account the electron spin.

The paper is organized as follows. In section 2, we derive Harper’s equation for a simple
square lattice. In section 3, we consider a complex two-dimensional lattice. In section 4, we
discuss numerical results. Some mathematical proofs are given in the appendix.

2. Harper’s equation for a simple square lattice

Let us consider an electron on a two-dimensional square lattice subject to a dc magnetic
field B perpendicular to the lattice plane. The lattice consists of atoms whose positions are
characterized by two-dimensional radius vectors anm = (an, am) where a is the minimal
period of the lattice, n,m = 0,±1,±2, . . . . We denote the potential energy of interaction of
the electron at a point r = (x, y) with the atom at the point anm as U(r − anm). This function
is assumed to be cylindrically symmetric, i.e. U(r − anm) depends only on |r − anm|. We
choose the vector potential of the magnetic field in the Landau gauge A = (0, Bx).

To find the electron energy spectrum, we should solve a stationary Schrödinger equation
for the electron wavefunction ψ(r)[

1

2µ

(
p̂ − e

c
A

)2
+ V1(r)

]
ψ(r) = Eψ(r). (1)

Here µ, e are the electron mass and charge; c is the velocity of light;

V1(r) =
∑
n,m

U(r − anm) (2)

is the periodic potential of the lattice.
In what follows we suppose that the magnetic field obeys the condition

Ba2/�0 = �/�0 = p/q (3)

where � is the magnetic flux per lattice cell, �0 = 2πh̄c/|e| is a magnetic flux quantum; h̄ is
the Planck constant; p and q are integers, p/q is an irreducible fraction. Then the wavefunction
ψk(r) being a solution of equation (1) and corresponding to a wavevector k = (kx, ky) should
satisfy the Bloch–Peierls conditions

ψk(x + qa, y) = exp(ikxqa − i2πpy/a)ψk(x, y) (4a)
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ψk(x, y + a) = exp(ikya)ψk(x, y). (4b)

If we fulfil the operation of complex conjugation and reverse the direction of the magnetic
field in equation (1), we will come to the latter again. Therefore, if the function ψk(r, B)

is an eigenfunction of equation (1), then the function ψ∗
k (r,−B) is an eigenfunction of this

equation too (the asterisk means the operation of complex conjugation). On the other hand,
according to equations (4a) and (4b), the function ψ∗

k (r,−B) transforms as ψ−k(r, B), i.e.

ψ∗
k (x + qa, y;−B) = exp(−ikxqa − i2πpy/a)ψ∗

k (x, y;−B) (5a)

ψ∗
k (x, y + a;−B) = exp(−ikya)ψ∗

k (x, y;−B) (5b)

(we assume that q is positive, the integer p can be either positive or negative; the reverse of
the direction of the magnetic field means the change of the sign of the number p). Thus, we
conclude that

E(k,−B) = E(−k, B). (6)

We emphasize that the wavefunction ψk(r) found approximately should satisfy not only
the Bloch–Peierls conditions (4a) and (4b), but also conditions (5a) and (5b).

In the tight-binding approximation we seek the wavefunction ψk(r) in the form

ψk(r) =
∑
n,m

gn(k) exp

(
ikanm − i2π

p

q

y − ma

a
n

)
ψ0(r − anm). (7)

Here gn(k) (n = 0,±1,±2, . . .) are unknown coefficients; ψ0(r − anm) is the normalized
wavefunction of an electron interacting only with the atom at the site anm. The wavefunction
ψ0(r − anm) obeys a Schrödinger equation[

1

2µ

(
p̂ +

|e|B
c

(x − na)y0

)2

+ U(r − anm)

]
ψ0(r − anm) = E0ψ0(r − anm) (8)

where y0 is the unit vector of the y axis; E0 is the energy of the electron in the state
ψ0(r − anm). It should be noted that the wavefunction in the form (7) was used in [17] in
which electron states in a three-dimensional cubic lattice subject to a high magnetic field were
studied; however, the authors of [17] neglected the influence of the magnetic field on the
atomic wavefunction ψ0(r − anm).

The wavefunction (7) is a linear combination of the atomic wavefunctions of the form

exp

(
−i2π

p

q

y

a
n

)
ψ0(r − anm) = exp(ieByn/(h̄c))ψ0(r − anm).

This expression is similar to, but does not coincide with the atomic wavefunction at the site
anm, used in [15] (see equation (17) therein). The distinction is connected with different
gauges of the vector potential in [15] and in our work.

Below we shall suppose that, if we make a gauge transformation of the wavefunction
ψ0(r) in order to go over from the Landau gauge A = (0, Bx) to the symmetric gauge
A′ = [B × r]/2, we shall get a wavefunction �0(r) with the angular momentum equal to zero.
The latter wavefunction is real, does not depend on the direction of the vector r and obeys the
equation

− h̄2

2µr

d

dr

(
r

d�0

dr

)
+

(
e2B2

8µc2
r2 + U(r)

)
�0 = E0�0. (9)

Since A = A′ + ∇f with f = Bxy/2, we obtain

ψ0(r) = �0(r) exp(ief/(h̄c)) = �0(r) exp
(−ixy

/(
2l2

H

))
(10)
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where lH = √
ch̄/(|e|B) is the magnetic length. Obviously, ψ0(−r) = ψ0(r). The authors of

[15] replaced the atomic potential by a harmonic-oscillator potential and obtained an explicit
expression for the function �0(r). However, such a choice of the atomic potential is not
suitable for calculating the coefficients of Harper’s equations. These coefficients contain not
only the atomic potential, but also the lattice potential (see, for example, equations (14a)–
(14c)). If the atomic potential is chosen in the harmonic-oscillator form, the series for the
lattice potential does not converge. When deriving Harper’s equations for simple and complex
lattices, we do not choose any concrete form of the atomic potential U(r).

One can verify that, under the condition of periodicity gn+q = gn, function (7) satisfies
the Bloch–Peierls conditions (4a) and (4b). We assume that the condition of periodicity holds.
Moreover, in this case function (7) satisfies conditions (5a) and (5b) as well.

Substituting the wavefunction (7) into the Schrödinger equation (1) and taking into account
that(

p̂y +
|e|B
c

x

)2

exp

(
−i2π

p

q

y − ma

a
n

)
ψ0(r − anm)

= exp

(
−i2π

p

q

y − ma

a
n

) (
p̂y +

|e|B
c

(x − na)

)2

ψ0(r − anm) (11)

we obtain∑
n,m

gn(k) exp

(
ikanm − i2π

p

q

y − ma

a
n

)
(E0 − E + V1(r) − U(r − anm))ψ0(r − anm) = 0.

(12)

We multiply the latter equation by

exp

(
−ikan′m′ + i2π

p

q

y − m′a
a

n′
)

ψ∗
0 (r − an′m′)

and carry out integration over x, y. In the tight-binding approximation the overlapping of
the wavefunctions localized at different sites of the lattice is negligible, and it is enough to
take into account the electron transitions between the nearest neighbouring sites of the lattice.
Then on the left-hand side of equation (12) we can retain the term with n = n′,m = m′, two
terms with n = n′ ± 1,m = m′ and two terms with n = n′,m = m′ ± 1. As a result, we have
(below we write n,m instead of n′,m′)

(E − E0 − A)gn − B+
1 gn+1 eikxa − B−

1 gn−1 e−ikxa

− (
B+

2 ei(kya+2π(p/q)n) + B−
2 e−i(kya+2π(p/q)n)

)
gn = 0 (13)

where

A =
∫

(V1(r) − U(r))|ψ0(r)|2 d2r (14a)

B±
1 =

∫
ψ∗

0 (r)(E0 − E + V1(r) − U(r ∓ ax0))ψ0(r ∓ ax0) e∓i2πpy/(qa) d2r (14b)

B±
2 =

∫
ψ∗

0 (r)(E0 − E + V1(r) − U(r ∓ ay0))ψ0(r ∓ ay0) d2r. (14c)

The vector x0 is the unit vector of the x axis.
In the tight-binding approximation the radius of localization of the wavefunction ψ0(r)

is small as compared to the lattice period. If the function V1(r) − U(r) slowly changes in the
domain of localization of ψ0(r), we can assume that

A � lim
r→0

[V1(r) − U(r)]. (15)
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If we completely neglect the overlapping of the wavefunctions localized at different sites of
the lattice, equation (13) reduces to (E − E0 − A)gn = 0. Therefore, E = E0 + A, and in the
small overlap integrals B±

1,2 we can replace E0 − E by −A.
Since U(r) = U(r), V1(−r) = V1(r) and ψ0(−r) = ψ0(r), one can verify that B+

1 = B−
1

and B+
2 = B−

2 . The lattice has a symmetry axis of the fourth order (V1(x, y) = V1(y,−x)),
therefore, by replacing the integration variables x = y ′, y = −x ′ in equation (14b) and
using equation (10), one can prove that B+

1 = B+
2 . Lastly, the lattice has a symmetry plane

(V1(x, y) = V1(−x, y)), and the overlap integral B+
2 can be represented in the form

B+
2 =

∫
(−A + V1(r) − U(r − ay0))�0(r)�0(|r − ay0|) cos

(
xa

2l2
H

)
d2r (16)

i.e. this integral is real. Thus, all the overlap integrals B±
1,2 are equal and real. We emphasize

that these integrals contain both the atomic and lattice potentials (see equation (16)) and do
not reduce to the hopping integral of [15], containing only the atomic potential.

Now we can rewrite equation (13) as

(E − E0 − A)gn − B+
2 (gn+1 eikxa + gn−1 e−ikxa) − 2B+

2 gn cos(kya + 2π(p/q)n) = 0. (17)

This is Harper’s equation. However, in contrast to the traditional Harper’s equation, the energy
E0 and the overlap integral B+

2 depend on the magnetic field. Since the unknown coefficients
gn(k) are periodic in n with a period q, equation (17) reduces to a system of q linear equations.
Therefore, for a fixed q, the energy spectrum contains q subbands defined in the magnetic
Brillouin zone

−π/(qa) < kx � π/(qa) −π/a < ky � π/a. (18)

However, the energy is a periodic function of ky with a period 2π/(qa) [4, 5]. (A
straightforward proof of this statement is as follows. Replacing ky in equation (17) by
ky + 2π/(qa), we have

cos(kya + 2π/q + 2π(p/q)n) = cos(kya + 2π(p/q)n′ + 2πs)

where n′, s are integer solutions of a Diophantine equation pn′ + qs = pn + 1. Introducing
g̃n′ = gn, we restore equation (17). Therefore, E(kx, ky + 2π/(qa)) = E(kx, ky).) Thus, it is
enough to consider the energy spectrum in a part of the magnetic Brillouin zone,

−π/(qa) < kx,y � π/(qa). (19)

3. Harper’s equations for a complex lattice

In the present section, we derive Harper’s equations for a complex plane lattice consisting of
two identical square sublattices one of which is displaced with respect to the other sublattice
by a vector d = (dx, dy) (see figure 1). We restrict ourselves to the case in which dx = dy , i.e.
the vector of displacement is directed along a diagonal of a cell of the lattice. Obviously, it is
enough to consider the domain 0 < d < a/

√
2 of the parameter d. The wavefunction of

an electron obeys the Schrödinger equation (1) in which the potential V1(r) should be
replaced by

V2(r) =
∑
n,m

[
U(r − a−

nm) + U
(
r − a+

nm

)]
(20)

where a±
nm = anm ± d/2; anm = (an, am) and n,m = 0,±1,±2, . . . . The atomic potential

U(r) is the same as in the preceding section. The magnetic field satisfies condition (3). In the
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Figure 1. Plane lattice consisting of two identical square sublattices. One sublattice (white
circles) is displaced with respect to the other sublattice (black circles) by a vector d. The origin of
coordinates is in the midpoint between two nearest atoms belonging to the different sublattices.

tight-binding approximation we seek the wavefunction ψk(r) in the form

ψk(r) =
∑
n,m

gn(k) exp

(
ikanm − i2π

p

q

y − ma

a

(
n − dx

2a

))
ψ0(r − a−

nm)

+
∑
n,m

fn(k) exp

(
ikanm − i2π

p

q

y − ma

a

(
n +

dx

2a

))
ψ0

(
r − a+

nm

)
. (21)

Here gn(k), fn(k) are unknown coefficients; the wavefunctions ψ0
(
r − a∓

nm

)
obey the

Schrödinger equation (8) in which x − na, r − anm should be replaced by x − na ± dx/2,

r − a∓
nm, respectively. The function ψ0(r) has the form (10). We suppose that the conditions

of periodicity gn+q = gn, fn+q = fn hold. In this case the wavefunction (21) satisfies the
Bloch–Peierls conditions (4a), (4b) and conditions (5a), (5b). We substitute the wavefunction
(21) into the Schrödinger equation, take into account that(

p̂y +
|e|B
c

x

)2

exp

(
−i2π

p

q

y − ma

a

(
n ∓ dx

2a

))
ψ0

(
r − a∓

nm

)

= exp

(
−i2π

p

q

y − ma

a

(
n ∓ dx

2a

)) (
p̂y +

|e|B
c

(
x − na ± dx

2

))2

ψ0
(
r − a∓

nm

)
(22)

and obtain∑
n,m

gn(k) exp

(
ikanm − i2π

p

q

y − ma

a

(
n − dx

2a

))
(E0 − E + V2(r) − U(r − a−

nm))

×ψ0(r − a−
nm) +

∑
n,m

fn(k) exp

(
ikanm − i2π

p

q

y − ma

a

(
n +

dx

2a

))

× (
E0 − E + V2(r) − U

(
r − a+

nm

))
ψ0

(
r − a+

nm

) = 0. (23)

We multiply the latter equation by

exp

(
−ikan′m′ + i2π

p

q

y − m′a
a

(
n′ − dx

2a

))
ψ∗

0 (r − a−
n′m′)

and integrate the result over x, y. In the tight-binding approximation we take into account
the electron transitions between the nearest neighbouring sites. The sites nearest to the site
a−

n′m′ are a+
n′m′ , a+

n′,m′−1 and a+
n′−1,m′ , except for the case in which the displacement d is close to

a/
√

2 (if d = a/
√

2, the distances between the site a−
n′m′ and the sites a+

n′m′ , a+
n′,m′−1, a+

n′−1,m′

and a+
n′−1,m′−1 are equal; however, in this case the lattice consisting of two identical square
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sublattices can be considered as a simple square lattice with a period a/
√

2). Thus, on the
left-hand side of equation (23) we can retain the term with n = n′,m = m′ in the first sum
and three terms (with n = n′,m = m′; n = n′,m = m′ − 1 and n = n′ − 1,m = m′) in the
second sum. The latter three terms describe the electron transitions between the site a−

n′m′ of
one sublattice and three sites of the other sublattice. Using notation n,m instead of n′,m′,
we find

(E − E0 − D)gn − B1fn − B2fn e−ikya−i2π(p/q)(n+dx/(2a)) − B3fn−1 e−ikxa = 0 (24)

where

D =
∫

(V2(r) − U(r + d/2))|ψ0(r + d/2)|2 d2r (25a)

B1 =
∫

ψ∗
0 (r + d/2)(E0 − E + V2(r) − U(r − d/2))ψ0(r − d/2) e−i2πpydx/(qa2) d2r (25b)

B2 =
∫

ψ∗
0 (r + d/2)(E0 − E + V2(r) − U(r + ay0 − d/2))

×ψ0(r + ay0 − d/2) e−i2πpydx/(qa2) d2r (25c)

B3 =
∫

ψ∗
0 (r + d/2)(E0 − E + V2(r) − U(r + ax0 − d/2))

×ψ0(r + ax0 − d/2) ei2πpy(a−dx )/(qa2) d2r. (25d)

Similarly, multiplying equation (23) by

exp

(
−ikan′m′ + i2π

p

q

y − m′a
a

(
n′ +

dx

2a

))
ψ∗

0

(
r − a+

n′m′
)

and carrying out integration over x, y, we obtain

(E − E0 − D̃)fn − B̃1gn − B̃2gn eikya+i2π(p/q)(n−dx/(2a)) − B̃3gn+1 eikxa = 0 (26)

where

D̃ =
∫

(V2(r) − U(r − d/2))|ψ0(r − d/2)|2 d2r (27a)

B̃1 =
∫

ψ∗
0 (r − d/2)(E0 − E + V2(r) − U(r + d/2))ψ0(r + d/2) ei2πpydx/(qa2) d2r (27b)

B̃2 =
∫

ψ∗
0 (r − d/2)(E0 − E + V2(r) − U(r − ay0 + d/2))

×ψ0(r − ay0 + d/2) ei2πpydx/(qa2) d2r (27c)

B̃3 =
∫

ψ∗
0 (r − d/2)(E0 − E + V2(r) − U(r − ax0 + d/2))

×ψ0(r − ax0 + d/2) e−i2πpy(a−dx )/(qa2) d2r. (27d)

When deriving equations (24) and (26), we have neglected the amplitudes of electron
transitions from a site of one sublattice to the nearest sites of the same sublattice as compared
to the amplitudes of electron transitions to the nearest sites of the other sublattice. This is
justified under the reasonable assumption that the displacement of one sublattice with respect
to the other sublattice is not very small, namely the parameter d is larger than the radius of
localization of the wavefunction ψ0(r).
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Using the symmetry properties U(r) = U(r), V2(−r) = V2(r) and ψ0(−r) = ψ0(r), one
can prove that D̃ = D, B̃1 = B1, B̃2 = B2 and B̃3 = B3. If the function V2(r) − U(r + d/2)

slowly changes in the domain of localization of ψ0(r + d/2), equation (25a) reduces to

D � lim
r→−d/2

[V2(r) − U(r + d/2)]. (28)

It follows from equations (25b) and (27b) that

B1 − B̃∗
1 =

∫
(U(r + d/2) − U(r − d/2))ψ∗

0 (r + d/2)ψ0(r − d/2) e−i2πpydx/(qa2) d2r. (29)

The latter integral is equal to zero (see the appendix), therefore B1 = B̃∗
1 = B∗

1 , and we
conclude that the overlap integral B1 is real.

Introducing r′ = r − ax0 in equation (27d) and using the periodicity property V2(r′ +
ax0) = V2(r′), we come to the expression

B̃3 =
∫

ψ∗
0 (r′ + ax0 − d/2)(E0 − E + V2(r′) − U(r′ + d/2))

×ψ0(r′ + d/2) e−i2πpy ′(a−dx)/(qa2) d2r′.

From this expression and equation (25d) it follows that

B3 − B̃∗
3 =

∫
(U(r + d/2) − U(r + ax0 − d/2))

×ψ∗
0 (r + d/2)ψ0(r + ax0 − d/2) ei2πpy(a−dx )/(qa2) d2r. (30)

The latter integral is equal to zero (see the appendix), therefore B3 = B̃∗
3 = B∗

3 . Thus, the
overlap integral B3 is real.

Similarly one can obtain that

B2 = B̃∗
2 exp(i2πpdx/(qa)) = B∗

2 exp(i2πpdx/(qa))

therefore B2 exp(−iπpdx/(qa)) is real.
The plane perpendicular to the lattice plane and containing the vector d is a symmetry

plane of the lattice, therefore V2(x, y) = V2(y, x). By replacing the integration variables
x = y ′, y = x ′ in equation (25c) and using equation (10), we find

B2 e−iπpdx/(qa) =
∫

(E0 − E + V2(r) − U(r + ax0 − d/2))�0(|r + d/2|)
×�0(|r + ax0 − d/2|) exp

[
i((y − x)dx − ay − adx/2)

/(
2l2

H

)]
d2r.

The right-hand side of this expression coincides with the expression complex conjugate to the
right-hand side of equation (25d), therefore B2 exp(−iπpdx/(qa)) = B∗

3 = B3.
Thus, we can rewrite equations (24) and (26) in the form

(E − E0 − D)gn = B1fn + B3fn e−i(kya+2π(p/q)n) + B3fn−1 e−ikxa (31)

(E − E0 − D)fn = B1gn + B3gn ei(kya+2π(p/q)n) + B3gn+1 eikxa (32)

where the overlap integrals B1 and B3 are real. We introduce new unknown coefficients

Gn = (gn + fn)/
√

2 Fn = (gn − fn)/
√

2. (33)

The new coefficients are periodic in n, namely Gn+q = Gn, Fn+q = Fn. From equations (31)
and (32) it follows that

(E − E0 − D − B1)Gn = B3
[
Gn cos(kya + 2π(p/q)n) + 1

2 (Gn+1 eikxa + Gn−1 e−ikxa)
]

+ B3
[
iFn sin(kya + 2π(p/q)n) + 1

2 (Fn+1 eikxa − Fn−1 e−ikxa)
]

(34)
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(E − E0 − D + B1)Fn = −B3
[
Fn cos(kya + 2π(p/q)n) + 1

2 (Fn+1 eikxa + Fn−1 e−ikxa)
]

−B3
[
iGn sin(kya + 2π(p/q)n) + 1

2 (Gn+1 eikxa − Gn−1 e−ikxa)
]
. (35)

If the displacement d is not very close to a/
√

2 (i.e. an atom of one sublattice is not very
close to the midpoint of a cell of the other sublattice), the distance between the sites a−

nm and
a+

nm is markedly smaller than the distance between the sites a−
nm and a+

n−1,m. As a consequence,
the overlap integrals satisfy the inequality

|B3/B1| � 1. (36)

In the zero approximation in the ratio B3/B1 we find from equations (34) and (35)

E1 = E0 + D + B1(E1) (37)

E2 = E0 + D − B1(E2) (38)

(we remind that the overlap integrals B1 and B3 depend on E). The levels E1 and E2 form a
doublet into which the one-atomic level E0 would split due to the electron interaction with two
nearest neighbouring atoms (for example, a−

nm and a+
nm) if electron transitions to other atoms

were impossible. To express the quantities E1 and E2 in the explicit form, we rewrite B1 as

B1(E) = (E0 − E)J1 + I1 (39a)

where

J1 =
∫

ψ∗
0 (r + d/2)ψ0(r − d/2) e−i2πpydx/(qa2) d2r (39b)

I1 =
∫

ψ∗
0 (r + d/2)(V2(r) − U(r − d/2))ψ0(r − d/2) e−i2πpydx/(qa2) d2r. (39c)

Then we obtain

E1 = E0 + (D + I1)/(1 + J1) (40)

E2 = E0 + (D − I1)/(1 − J1). (41)

For the energy values close to E1, equation (35) shows that Fn ∼ (B3/B1)Gn � Gn.
Therefore, we can neglect the terms with Fn, Fn±1 on the right-hand side of equation (34). As
a result, we have

(E − E1)Gn = B3(E1)

2(1 + J1)
(2Gn cos(kya + 2π(p/q)n) + Gn+1 eikxa + Gn−1 e−ikxa). (42)

Similarly, for the energy values close to E2, we neglect the terms with Gn,Gn±1 on the
right-hand side of equation (35) and come to the equation

(E − E2)Fn = − B3(E2)

2(1 − J1)
(2Fn cos(kya + 2π(p/q)n) + Fn+1 eikxa + Fn−1 e−ikxa). (43)

We emphasize that, calculating the overlap integral B3 for equation (42), one has to substitute
E = E1 into the right-hand side of equation (25d), while, calculating B3 for equation (43),
one has to substitute E = E2 into the right-hand side of equation (25d).

Equations (42) and (43) have the form of Harper’s equation (see equation (17)) with the
energies E1,2 and overlap integrals depending on the magnetic field. Thus, we have shown
that a complex lattice consisting of two identical square sublattices one of which is displaced
along a diagonal of a cell of the other sublattice is described by two Harper’s equations.

The unknown coefficients Gn(k) and Fn(k) are periodic in n with a period q, therefore
each of equations (42) and (43) reduces to a system of q linear equations. As a consequence,
for any fixed q, the energy spectrum contains q subbands in the vicinity of the energy value
E = E1 and q subbands in the vicinity of the energy value E = E2. As explained at the
end of section 2, it is enough to consider the energy spectrum in the part (19) of the magnetic
Brillouin zone.
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4. Numerical results

To numerically solve Harper’s equations derived in sections 2 and 3, we need to know the
coefficients of these equations (for example, E0, A and B+

2 in equation (17)). We find the
coefficients self-consistently, namely we choose the atomic potential, find the eigenvalue E0

and the corresponding eigenfunction �0(r) by using a variational procedure, and then calculate
the integrals defining the coefficients of Harper’s equations (for example, integrals (14a)
and (16)).

We choose the atomic potential in the form

U(r) = −(h̄2/(2µbr)) exp(−r/a0) (44)

where b and a0 are parameters with the dimension of length. Our choice of the atomic potential
provides that the series for the lattice potential converges sufficiently quickly. We use a trial
function

�0(r;α, β) = C(α, β) exp
(−αr/b − βr2

/(
4l2

H

))
(45)

where α > 0, β � 0 are dimensionless parameters, C(α, β) is the normalizing factor. In
practice, it is more convenient to represent the trial wavefunction as

�0(r;α, β) = C(α, β) exp(−αr/b − βπpr2/(2qa2)). (46)

We choose such values of the parameters α, β, for which the functional

E0(α, β) = 2π

∫ ∞

0
�0(r;α, β)Ĥ0�0(r;α, β)r dr (47)

reaches its minimum (Ĥ0 in the integrand means the Hamiltonian on the left-hand side of
equation (9)). We suppose the energy E0 in equation (9) to be approximately equal to
minα,β E0(α, β).

One can observe that if we measure all lengths in units of a and the magnetic flux per
lattice cell in units of �0, then all quantities with the dimension of energy are measured in
units of h̄2/(µa2), and we do not need to give either a or µ.

4.1. Simple square lattice

The dependences of the electron energy E0 in an isolated atom and the overlap integral B+
2

in Harper’s equation (17) on the magnetic field for the chosen parameters b/a = 0.1 and
a0/a = 0.5 are depicted in figure 2 (we express the magnetic field through the magnetic flux
� per cell of the lattice). The energy shift A, in practice, does not depend on the magnetic
field (see equation (15)) and equals A � −4.11h̄2/(µa2). One can see that the larger the
magnetic field, the higher the electron energy in an isolated atom and the smaller the absolute
value of the overlap integral B+

2 . As we have mentioned, the diamagnetic shift of the atomic
level for the atomic potential in the harmonic-oscillator form was found in [15], but such a
choice of the atomic potential leads to a divergent series for the lattice potential and, therefore,
is unsuitable for calculating the overlap integral B+

2 .
Using the dependences of E0 and B+

2 on the magnetic field, we have numerically found
allowed values of energy for different values of the magnetic flux per lattice cell (Hofstadter’s
butterfly, see figure 3). If we neglected the influence of the magnetic field on the atomic
eigenfunction and eigenvalue, Hofstadter’s butterfly would be periodic in the magnetic flux
with a period �0. Figure 3 demonstrates that, if we take into account the influence of the
magnetic field more accurately, Hofstadter’s butterfly is no longer periodic in the magnetic
flux. In particular, the interval of allowed energy values at � = �0 is narrower than at � = 0.
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Figure 2. The dependences of the electron energy in an isolated atom (a) and the overlap integral
in Harper’s equation for a simple lattice (b) on the magnetic field. The parameters of the atomic
potential are b/a = 0.1 and a0/a = 0.5.

Figure 3. Hofstadter’s butterfly for a simple square lattice. The parameters of the atomic potential
are the same as in figure 2.

4.2. Complex lattice

First of all, we calculate the integrals I1 and J1 and then find the energies E1, E2 (see
equations (40) and (41)) as functions of the magnetic field. All these functions are depicted in
figure 4. As in the preceding subsection, we have chosen the parameters b/a = 0.1 and a0/a =
0.5. The modulus of the displacement vector is supposed to be d = √

2a/4. The energy shift D,
in practice, is independent of the magnetic field (see equation (28)) and is approximately equal
to −16.33h̄2/(µa2). Then we calculate the overlap integrals B3(E1) and B3(E2) in Harper’s
equations (42) and (43) (figure 5). One can see that the absolute value of the overlap integral
corresponding to the energy level E1 is markedly smaller than the absolute value of the overlap
integral corresponding to the level E2. Our derivation of equations (42) and (43) is based on
condition (36). One can verify that the overlap integrals B3(E1) and B3(E2) depicted in figure 5
satisfy this condition.

Hofstadter’s butterfly for the complex lattice is shown in figure 6. The butterfly is an
aggregate of two simple butterflies. The left-hand simple butterfly is markedly narrower than
the right-hand one. This is a consequence of the difference in the magnitudes of the overlap
integrals B3(E1) and B3(E2). However, it seems natural that the broadening of the lower level
E1 is smaller than the broadening of the higher level E2. As in the case of a simple lattice, the
butterfly is not periodic in the magnetic flux due to the dependence of the atomic eigenfunction
and eigenvalue on the magnetic field.
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Figure 4. The dependences of the integrals I1 (a), J1 (b) and energies E1 (c), E2 (d) on the
magnetic field. The parameters of the atomic potential are b/a = 0.1 and a0/a = 0.5. The
distance between two nearest atoms belonging to different sublattices is d = √

2a/4.

Figure 5. The dependences of the overlap integrals B3(E1) (a) and B3(E2) (b) in Harper’s
equations (42) and (43) on the magnetic field. The atomic potential parameters and the displacement
of one sublattice with respect to the other sublattice are the same as in figure 4.

Figure 6. Double Hofstadter’s butterfly for a complex lattice consisting of two identical sublattices.
The parameters of the atomic potential and the displacement of one sublattice with respect to the
other sublattice are the same as in figures 4 and 5.

5. Conclusion

Taking into account the influence of the magnetic field on the atomic eigenfunction and
eigenvalue, we have derived Harper’s equations for a simple two-dimensional square lattice
and for a complex two-dimensional square lattice. The latter consists of two simple square
sublattices one of which is displaced along a diagonal of a cell of the other sublattice. We have
shown that the complex lattice is described by two Harper’s equations. Hofstadter’s butterfly
for the simple lattice is not periodic in the magnetic flux per lattice cell. The periodicity would
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occur if one neglected the influence of the magnetic field on the atomic eigenfunction and
eigenvalue. Hofstadter’s butterfly for the complex lattice is an aggregate of two nonoverlapping
butterflies and is not periodic in the magnetic flux per lattice cell.
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Appendix

The function ψ0(r + d/2) in the integrand (29) satisfies the Schrödinger equation[
1

2µ

(
p̂ +

|e|B
c

(
x +

dx

2

)
y0

)2

+ U

(
r +

d
2

)]
ψ0

(
r +

d
2

)
= E0ψ0

(
r +

d
2

)
(A1)

while the function ψ0(r − d/2) exp(−i2πpydx/(qa2)) satisfies the equation[
1

2µ

(
p̂ +

|e|B
c

(
x +

dx

2

)
y0

)2

+ U

(
r − d

2

)]
e−i2πpydx/(qa2)ψ0

(
r − d

2

)

= E0 e−i2πpydx/(qa2)ψ0

(
r − d

2

)
. (A2)

We fulfil the operation of complex conjugation in equation (A1), multiply the result by
ψ0(r − d/2) exp(−i2πpydx/(qa2)) and subtract equation (A2) preliminarily multiplied by
ψ∗

0 (r + d/2). Then we carry out integration over x, y and take into account that the operator
p̂ + (|e|B/c)(x + dx/2)y0 is selfadjoint. As a result, we obtain that the integral on the right-
hand side of equation (29) is equal to zero.

Similarly, using equation (A1) and the equation[
1

2µ

(
p̂ +

|e|B
c

(
x +

dx

2

)
y0

)2

+ U

(
r + ax0 − d

2

)]
ei2πpy(a−dx)/(qa2)ψ0

(
r + ax0 − d

2

)

= E0 ei2πpy(a−dx)/(qa2)ψ0

(
r + ax0 − d

2

)
(A3)

and repeating the reasoning given above, one can prove that the integral on the right-hand side
of equation (30) is equal to zero.
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